Urgent Computing Workshop

Scheduling – A Review

Bill Nitzberg
Altair Engineering
April 2007

Who is “Bill Nitzberg”?

- Ph. D., CS, Univ. of Oregon
 - “Collective Parallel I/O”

NASA – Mgr, Parallel Research
- MPI-2 I/O editor
- Whitney Cluster project lead
- Grid Forum, area director
- OpenPBS development
- NASA’s Information Power Grid

Altair Engineering, Inc.
- Chief architect, PBS GridWorks
- Open Grid Forum, board member
- Grid and standards evangelist

CTO, Altair Grid Technologies
Altair Engineering, Inc.
Scheduling and Resource Management

- Batch
- Monitor
- Schedule
 - Policy – who's allowed to do what, when, and for how long?
 - Optimization – given policy, make the "best use of resources"
- Provision
- Execute
- Limit
- De-provision
- Fix
- Account

Goals of Scheduling

Fundamental scheduling goals are divergent

- User → Complete work as soon as possible
- System Manager → Keep resources 100% utilized
- CIO → Drive enterprise-wide strategic direction (efficiently)

Urgent Computing goals...

- User → Complete work as soon as possible
- System Manager → Complete work as soon as possible
 with minimal impact to other users
- CIO → Complete work as soon as possible
 with minimal cost when not in use
Scheduling Mechanisms for Urgent Computing

Best Effort – Normal Usage
- No impact
- Probably the most likely technology to be exploited for Urgent Computing

Wait for Space – Job Priority
- Works with all existing scheduling systems
- Minimal impact
- Maximum waiting time can be modulated by setting other Scheduling Policy limits (like max job walltime)

Now – Oversubscribe
- Schedulers support this, but nobody implements this in practice
 - As both Urgent Job and existing jobs can easily thrash
- Could be a possibility for some types of job mixes
Make Space – Preemption

- **Suspend**
 - Impact depends on memory use & overall system reliability
 - Urgent job can start immediately
 - Supported everywhere (except IBM Blue Gene)

- **Application-level checkpoint**
 - Usually minimal data, equivalent to original input file
 - Urgent job can start quickly
 - Only available for select applications

- **System-level checkpoint (save entire memory space)**
 - Can be "expensive"
 - Amortize checkpoint during run (slowing down all jobs), or
 - Write entire image at checkpoint time (slowing Urgent job start)
 - Existing technology is immature (but improving!)

- **Kill & start over**
 - Urgent job can start immediately
 - Lost work of killed/requeued job

Specify a Time – Advance Reservations

- **Maps well to Urgent Computing scenarios**
 - Lead times should allow reservation to fit without preemption
 - Reservation is: start + end + required resources

- **Orthogonal to Next and Now**
 - Traditional: reserve “1000 cpus and 1 TB memory” from 8a – 10a today
 - ASAP: reserve “… Next
 - Preemptive: reserve “… Now

- Support across multiple scheduling systems (though not all)
- Variable impact – may leave large “holes” that cannot be backfilled
- Good choice for co-allocation
 - Works alone or in concert with preemption
Expected Technology Improvements

- Priorities
- Preemption
- Reservations
- Staging
- Provisioning (including VMs)

Expect continued improvements in all of the above areas to naturally evolve over the next few years...

Less Expected Technology Improvements

- System-level Checkpointing – commercial viability unclear (outside niches)
- Deadline-based scheduling
- Speculative execution support
- Ramp-up allocation of resources
 - Get 100 cpus now, add 128 in 20 min, ... (Next and next and next ...)
- More information modeling
 - Represent choices in requirements and system availability
 - Computing needs tend to vary with available resources
 - E.g., run one big high-fidelity model or many low-fidelity models...
- Programatic interfaces for all of the above
 - To support aggregating resources from multiple independent organizations
Other Thoughts...

- You can always game the system
 - And this may be good enough for not-quite-so Urgent Computing

- Altruistic preemption (at user level, not just CIO level)
 - Allow users to denote their jobs as altruistic, and offer up their resources

- Policies -- What policies are stakeholders willing to accept?

- What about Commercial (licensed) applications?

It’s EveryWare!

- Easy to use
- Hard to break
- Do more (with less)
- Keep track and plan

sales@pbspro.com